
Proteomics Workflow and Visualizations in R
William Skelly

Required Packages

General data handling
library(readxl)
library(tidyverse)

Core analysis and data structures
library(Biobase)
library(limma)
library(imputeLCMD)

Functional enrichment analysis
library(ReactomePA)
library(reactome.db)
library(AnnotationDbi)

Visualization
library(ggplot2)
library(ComplexHeatmap)
library(circlize)
library(patchwork)
library(ggpubr)

Report formatting
library(knitr)

Introduction:

Mass-spectrometry based proteomics workflows are important for examining the large-scale
quantification of protein expression levels. Data visualization is an important part of this

1

workflow, as it helps interpret results in meaningful ways. This project focuses on the prepa-
ration, and visualization of proteomics data across four experimental conditions (KO, KO-IV,
KO-NEB, WT). The goal is to apply data visualization techniques to explore differential pro-
tein expression patterns across condition groups.

A series of visualization methods, including multidimensional scaling (MDS) plots, volcano
plots, heat-maps and gene-concept network plots, were applied to visualize relationships be-
tween condition groups. The methods section describes data preprocessing workflows and
statistical modeling steps, while the results section presents the figures. Both sections in-
clude reproducible R code. The overall structure of the data processing workflow, including
the sequence of visualizations and major code design elements, was adapted from Sanz and
Sánchez-Pla (2019) (Sanz and Sánchez-Pla 2019). Additionally, some of the visualizations
were inspired by and adapted from Schessner (2022) (Schessner, Voytik, and Bludau 2022).

This project was completed with the help of my P.I., Dr. Leonardo Ferreira and my statistics
advisor, Dr. Edwin Iversen.

2. Methods:

Data preprocessing, modeling, and visualization were conducted using R and Bioconductor
packages (Huber et al. 2015). Specific packages used included limma (Ritchie et al. 2015),
Biobase (Gentleman et al. 2004), ReactomePA (Yu and He 2016), and others, as described
below.

The proteomics dataset was processed and visualized following a structured computational
workflow. Data preprocessing steps included log2 transformation, missing value imputation,
and filtering based on data completeness. Differential expression analysis was conducted
through the limma package , which included linear modeling and empirical Bayes moderation.
Enriched pathway analysis was conducted through the ReactomePA package . Visualization
techniques, including volcano plots, multidimensional scaling (MDS) plots, heatmaps, venn
diagrams, and gene-concept network plots, were applied to explore expression patterns and
pathway enrichments.

2.1 Data Acquisition and Pre-processing

The proteomics dataset was provided by Dr. Leonardo Ferreira as a excel spreadsheet. The
Accession Number and Entrez Gene ID identify each protein found through the MS process.
Columns 50:61 contain the normalized protein abundances for each of the biological replicants.
Each of the four condition groups (KO, KO-NEB, KO-IV, WT) have three samples each.
Before I received the normalized abundance data, it was processed using the 100% presence
filter. This means that for each condition group, if a protein was not detected in all three
samples, then the data for the three samples were not included.

2

proteomics_df <- read_excel("../Data/33677_HEART_LFQ_PD.xlsx")

exprs_df <- proteomics_df[, c(50:61)]

rownames(exprs_df) <- proteomics_df$Accession

clean_names <- gsub("Abundances \\(Normalized\\): (.*): Sample, (.*)",
"\\1: \\2", colnames(exprs_df))

colnames(exprs_df) <- clean_names

annotation_df <- proteomics_df[, c(22:28)]

rownames(annotation_df) <- proteomics_df$Accession

annotation_mat <- as.matrix(annotation_df)

The normalized protein abundances were first log2 transformed. Then, expression matrices
and associated sample metadata were organized using the ExpressionSet object structure from
the Biobase R package (Gentleman et al. 2004).

log_exprs_df <- log2(exprs_df)

exprs_df <- sapply(log_exprs_df, as.numeric)

exprs_mat <- as.matrix(exprs_df)

build_eset <- function(exprs_mat, annotation_mat,
exprs_type = c("unfiltered", "filtered", "imputed")) {

#' Build an ExpressionSet from proteomics data
#' with optional filtering or imputation
#'
#' @param exprs_mat A numeric matrix of protein abundance
#' values (rows = proteins, cols = samples)
#' @param annotation_mat A matrix or dataframe of protein-level
#' annotations (same rownames as exprs_mat)
#' @param exprs_type Character. One of "unfiltered", "filtered",
#' or "imputed", determining preprocessing steps
#'
#' @return An ExpressionSet object containing assay data, feature

3

#' data, and sample metadata
#' @export

exprs_mat and annotation df must be the same length
stopifnot(nrow(exprs_mat) == nrow(annotation_mat))

exprs_mat and annotation_mat must be matrices
stopifnot(is.matrix(exprs_mat) || is.matrix(annotation_mat))

exprs_mat and annotation_mat must have the same row names.
stopifnot(rownames(annotation_mat) == rownames(exprs_mat))

exprs_type <- match.arg(exprs_type)

if (exprs_type == "unfiltered") {

exprs_mat_use <- exprs_mat
annotation_df_use <- annotation_df

} else if (exprs_type == "filtered") {

Keep rows where there are no NA values.
na_percent <- rowMeans(is.na(exprs_mat))

exprs_mat_filtered <- exprs_mat[na_percent <= 0,]
annotation_df_filtered <- annotation_df[rownames(exprs_mat_filtered),]

exprs_mat_use <- exprs_mat_filtered
annotation_df_use <- annotation_df_filtered

} else if (exprs_type == "imputed") {

na_percent <- rowMeans(is.na(exprs_mat))

exprs_mat_filtered <- exprs_mat[na_percent <= 0.25 ,]

exprs_mat_imputed <- impute.MinProb(as.matrix(exprs_mat_filtered),
q = 0.01)

annotation_df_imputed <- annotation_df[rownames(exprs_mat_imputed),]

exprs_mat_use <- exprs_mat_imputed

4

annotation_df_use <- annotation_df_imputed

}

Reconstruct sample metadata (doesn't change between types)
sample_names <- colnames(exprs_mat_use)

condition <- sapply(strsplit(sample_names, ": "),
function(x) x[2])

condition <- factor(condition)

sample_data <- data.frame(
sampleID = sample_names,
Condition = condition

)

Create the ExpressionSet
eset_out <- ExpressionSet(assayData = exprs_mat_use)
fData(eset_out) <- annotation_df_use
pData(eset_out) <- sample_data

return(eset_out)
}

eset_unfiltered <- build_eset(exprs_mat, annotation_mat,
exprs_type = "unfiltered")

eset_filtered <- build_eset(exprs_mat, annotation_mat,
exprs_type = "filtered")

eset_imputed <- build_eset(exprs_mat, annotation_mat,
exprs_type = "imputed")

[1] 0.4542286

Missing values were imputed using the MinProb method from the imputeLCMD R package
(Lazar et al. 2016). More information about the imputation method can be found in Lazar et
al. 2016).

For all subsequent analysis, eset_unfiltered was used as the expression set for differential
expression analysis and enriched pathway analysis. The choice to use the unfiltered expression
set stems from the fact that the data was already filtered using the 100% presence filter, and

5

so imputing values for a full set of samples results in condition comparisons that may be
completely dependent on imputed data.

For a comprehensive discussion on imputation techniques for proteomics data with missing
values, refer to Wang (2017). (Wang et al. 2017).

eset <- eset_unfiltered

#exprs(eset) # expression values
#fData(eset) # annotations
#pData(eset) # sample metadata

2.2 Visualization Workflows

In this section, we discuss the methods used to create each visualization. Code associated with
each graph is displayed.

2.2.1 Sample-Level MDS Plots and Dimension Variance

I defined a plot_mds function that takes an expression matrix, and the plotting dimensions as
input, and uses the plotMDS function in the limma package (Ritchie et al. 2015) to generate
sample-level MDS plots across different dimensions. The top argument specifies how many of
the most variable proteins to use for computing pairwise distances between samples. Because
gene.selection is set to “pairwise”, a different set of top proteins are selected for each pair of
samples. According to the limma documentation, the “distances on the plot can be interpreted
as leading log2-fold-change, meaning the typical (root-mean-square) log2-fold-change between
the samples for the genes that distinguish those samples” (Bioconductor n.d.).

plot_mds <- function(exprs_matrix, x_dim, y_dim, group, group_color,
plot = TRUE, clean = FALSE) {

#' Plot MDS (Multidimensional Scaling) results from
#' an expression matrix
#'
#' @param exprs_matrix A numeric expression matrix (e.g., from
#' ExpressionSet) with protein abundances (features x samples)
#' @param x_dim Integer. The MDS dimension to use for the x-axis
#' @param y_dim Integer. The MDS dimension to use for the y-axis
#' @param title_prefix Character. Optional prefix for the plot
#' title
#' @param plot Logical. If TRUE, generates the MDS plot;
#' if FALSE, only returns explained variance

6

#' @param clean Logical. Indicates whether the data is
#' cleaned/imputed (affects plot title)
#'
#' @return A numeric vector of the percent variance
#' explained by each MDS dimension
#' @export

Run MDS but do not plot immediately
mds_result <- plotMDS(exprs_matrix, gene.selection = "pairwise",

top = 500, dim.plot = c(x_dim, y_dim),
plot= FALSE)

Extract and format variance explained
var_expl <- round(mds_result$var.explained, 4) * 100
convert to percentage

if (plot) {
Adjust title based on whether data is imputed
title <- ifelse(clean, "Imputed", "Filtered")

Plot the MDS dimensions
par(mar = c(5, 4, 4, 8), xpd = TRUE)
plot(mds_resultx, mds_resulty,

col = group_colors[group],
pch = 16,
cex = 1.5,
xlab = paste0("Dim ", x_dim, " (", var_expl[x_dim], "%)"),
ylab = paste0("Dim ", y_dim, " (", var_expl[y_dim], "%)"),
main = paste0(title))

Add legend outside the plot area
legend("topright", inset = c(-0.25, 0),

legend = levels(group),
col = group_colors,
pch = 16,
pt.cex = 1.5,
bty = "n")

}

invisible(var_expl)
}

7

2.2.2 Volcano Plots for Differential Expression Analysis

Differential expression analysis was conducted using the eBayes function in the limma package
(Phipson et al. 2016). The functions used, model.matrix, makeContrasts, contrast.fit,
topTable and eBayes, all come from the limma package. For a comprehensive discussion
about why we used eBayes for differential expression analysis of proteomics data, refer to
(Kammers et al. 2015).

First, I built a design matrix using model.matrix from condition group labels (WT, KO-IV,
KO-NEB, KO). Then, I fit a linear model to each protein (row) in the expression set separately
using the lmFit function.

Each row in the design matrix is a sample, 1 - 12, and each column
is a condition group (KO, KO-IV, KO-NEB, WT). Each cell is either
1 if that sample belongs to that condition group, or 0 if not.

designMat<- model.matrix(~0+Condition, pData(eset))

colnames(designMat) <- c("KO", "KO.IV", "KO.NEB", "WT")

print(designMat)

KO KO.IV KO.NEB WT
1 1 0 0 0
2 1 0 0 0
3 1 0 0 0
4 0 1 0 0
5 0 1 0 0
6 0 1 0 0
7 0 0 1 0
8 0 0 1 0
9 0 0 1 0
10 0 0 0 1
11 0 0 0 1
12 0 0 0 1
attr(,"assign")
[1] 1 1 1 1
attr(,"contrasts")
attr(,"contrasts")$Condition
[1] "contr.treatment"

8

fit <- lmFit(eset, designMat)

Then, I used the makeContrasts function to define the comparisons between condition groups
(WT:KO, KO-IV:KO, KO-NEB:KO) and used contrast.fit to apply the contrasts to the
linear model.

Define contrasts (other groups compared to KO)
contrastMat <- makeContrasts(
WTvsKO = WT - KO,
KO.IVvsKO = KO.IV - KO,
KO.NEBvsKO = KO.NEB - KO,
levels = designMat

)

print(contrastMat)

Contrasts
Levels WTvsKO KO.IVvsKO KO.NEBvsKO
KO -1 -1 -1
KO.IV 0 1 0
KO.NEB 0 0 1
WT 1 0 0

fit.main <- contrasts.fit(fit, contrastMat)

Then, I used the eBayes function to shrink the variances of each protein. This improves the
stability of tests when the sample size is small, in our case, 3 samples per condition.

fit.main <- eBayes(fit.main)

I used the topTable function to summarize the linear model fit object produced by
eBayes. This orders the top ranked proteins by differential expression for each condition
group, where differentially expressed proteins are defined as | log2 Fold Change $ �1$ and
Benjamini-Hochberg adjusted p-values < 0.05.

topTab_WTvsKO <- topTable(fit.main, number = nrow(fit.main),
coef = "WTvsKO", adjust = "BH")

topTab_KO.NEBvsKO <- topTable(fit.main, number = nrow(fit.main),

9

coef = "KO.NEBvsKO", adjust = "BH")

topTab_KO.IVvsKO <- topTable(fit.main, number = nrow(fit.main),
coef = "KO.IVvsKO", adjust = "BH")

I added a significance flag to the topTable to document whether a protein was significant
(differentially expressed).

Add significance flag
SigP <- 0.05
SigLFC <- 1

topTab_WTvsKO$Significant <- with(topTab_WTvsKO,
ifelse(adj.P.Val < SigP & abs(logFC) > SigLFC,

"Significant", "Not Significant"))

topTab_KO.IVvsKO$Significant <- with(topTab_KO.IVvsKO,
ifelse(adj.P.Val < SigP & abs(logFC) > SigLFC,

"Significant", "Not Significant"))

topTab_KO.NEBvsKO$Significant <- with(topTab_KO.NEBvsKO,
ifelse(adj.P.Val < SigP & abs(logFC) > SigLFC,

"Significant", "Not Significant"))

2.2.3 Overlap of Differentially Expressed Proteins Across Contrasts

The DecideTests function from the limma package was used to compare the number of dif-
ferentially expressed proteins in each contrast group.

Shows the number of upregulated, downregulated, and non
significant proteins from each contrast group.

res <- decideTests(fit.main, method = "separate",
adjust.method = "BH", p.value = SigP,
lfc = SigLFC)

sum.res.rows <-apply(abs(res),1,sum)

res.selected <-res[sum.res.rows!=0,]

10

print(summary(res))

WTvsKO KO.IVvsKO KO.NEBvsKO
Down 132 65 129
NotSig 1733 1918 1825
Up 41 54 53

2.2.4 Heatmap of Differentially Expressed Proteins

Differentially expressed proteins from the decideTests function were selected for the
heatmap. Z-scores represent scaled expression levels relative to the mean across samples. The
HeatmapAnnotation and Heatmap functions from the ComplexHeatmap package were used to
create the heatmap. (Gu, Eils, and Schlesner 2016).

Get only selected DE proteins
proteinsInHeatmap <- rownames(res.selected)
HMdata <- exprs(eset)[rownames(exprs(eset)) %in% proteinsInHeatmap,]

Z-score scale each row (protein)
HMdata_scaled <- t(scale(t(HMdata)))

Create annotation from column names
annotation_col <- data.frame(
Condition = factor(sapply(strsplit(colnames(HMdata_scaled), ": "),

function(x) x[2]))
)
rownames(annotation_col) <- colnames(HMdata_scaled)

Define condition colors
ann_colors <- list(
Condition = c(

"KO" = "red",
"KO-IV" = "blue",
"KO-NEB" = "green",
"WT" = "yellow"

)
)

Format annotation for ComplexHeatmap
ha <- HeatmapAnnotation(

11

Condition = annotation_col$Condition,
col = ann_colors

)

Define color scale for z-score
col_fun <- colorRamp2(c(-2, 0, 2), c("blue", "white", "red"))

Draw the heatmap
heatmap_plot <- Heatmap(HMdata_scaled,

name = "z-score",
col = col_fun,
top_annotation = ha,
show_row_names = FALSE,
show_column_names = TRUE,
column_names_gp = gpar(fontsize = 10),
cluster_rows = TRUE,
cluster_columns = TRUE,
clustering_method_rows = "complete",
clustering_method_columns = "complete",
column_title = "")

2.2.5 Enrichment Analysis

Reactome pathway enrichment analysis was performed using a custom wrapper function,
runReactomeEnrichment, which iteratively applies the enrichPathway function from the Re-
actomePA package (Yu and He 2016) to multiple sets of differentially expressed proteins. The
background universe was defined as the intersection between proteins in the full dataset and
those annotated in the Reactome database using the reactome.db package (Ligtenberg 2019).
Gene-to-pathway mapping and annotation extraction were handled using functions from the
AnnotationDbi package (Pagès et al. 2023). For each contrast group, differentially expressed
proteins were tested for pathway over-representation. The function returns the enrichResult
as a dataframe and the object itself for downstream analysis.

listOfTables <- list(KO.NEBvsKO = topTab_KO.NEBvsKO,
KO.IVvsKO = topTab_KO.IVvsKO,
WTvsKO = topTab_WTvsKO)

runReactomeEnrichment <- function(listOfTables, eset, organism = "mouse", pval_cutoff = 0.05) {
#' Run Reactome pathway enrichment for a list of top tables
#'
#' @param listOfTables A named list of top tables

12

#' (each with 'adj.P.Val' and 'Entrez.Gene.ID')
#' @param eset An ExpressionSet object containing
#' feature metadata with Entrez Gene IDs
#' @param organism Character. Organism name (default = \"mouse\")
#' @param pval_cutoff Numeric. Adjusted p-value cutoff for
#' selecting significant genes
#'
#' @return A list with two elements:
#' - enrichmentResults: list of data.frames of enrichment results
#' - enrichObjects: list of enrichPathway objects (for further plotting)
#' @export

Create list of selected significant Entrez IDs
listOfSelected <- list()

for (i in seq_along(listOfTables)) {
topTab <- listOfTables[[i]]
SigGenes <- topTab$adj.P.Val < pval_cutoff

selectedIDs <- topTab$Entrez.Gene.ID[SigGenes]
selectedIDs <- selectedIDs[!is.na(selectedIDs)]

listOfSelected[[i]] <- selectedIDs
names(listOfSelected)[i] <- names(listOfTables)[i]

}

Map Entrez IDs to Reactome genes
reactome_map <- AnnotationDbi::select(

reactome.db,
keys = keys(reactome.db, keytype = "ENTREZID"),
columns = c("ENTREZID", "REACTOMEID"),
keytype = "ENTREZID"

)
reactome_genes <- unique(reactome_map$ENTREZID)

Define universe genes
entrez_raw <- fData(eset)$`Entrez Gene ID`
entrez_clean <- unlist(strsplit(as.character(entrez_raw), ";"))
universe <- unique(trimws(na.omit(entrez_clean)))
universe <- intersect(universe, reactome_genes)

Run enrichment

13

enrichmentResults <- list()
enrichObjects <- list()

comparisonNames <- names(listOfSelected)

for (i in seq_along(listOfSelected)) {
genesIn_raw <- listOfSelected[[i]]
genesIn <- unlist(strsplit(genesIn_raw, ";"))
genesIn <- as.character(unique(na.omit(trimws(genesIn))))

comparison <- comparisonNames[i]

overlap <- length(intersect(genesIn, universe))
cat("Overlap with Universe genes for", comparison, ":", overlap, "\n")

enrich.result <- enrichPathway(
gene = genesIn,
pvalueCutoff = 0.05,
organism = organism,
universe = universe,
pAdjustMethod = "BH",
minGSSize = 5,
maxGSSize = 500

)

enrichObjects[[i]] <- enrich.result
names(enrichObjects)[i] <- comparison

enrichmentDf <- as.data.frame(enrich.result)
enrichmentResults[[i]] <- enrichmentDf
names(enrichmentResults)[i] <- comparison

}

return(list(
enrichmentResults = enrichmentResults,
enrichObjects = enrichObjects

))
}

Run the enrichment process
enrichment_output <- runReactomeEnrichment(listOfTables, eset)

14

Overlap with Universe genes for KO.NEBvsKO : 152
Overlap with Universe genes for KO.IVvsKO : 83
Overlap with Universe genes for WTvsKO : 133

2.2.6 Protein-Level MDS Plots Across Contrast Groups

To visualize protein-level separation between sample groups for each contrast, I developed
a custom function, plotMDSContrast, which applies the plotMDS function from the limma
package to each condition group. The function selects proteins with no missing values and
that are common to both the expression matrix and the corresponding topTable of differential
expression results.

plotMDSContrast <- function(eset, topTab, samples, title) {
#' Plot MDS (Multidimensional Scaling) results for a selected contrast
#'
#' @param eset An ExpressionSet object containing expression data
#' (features x samples)
#' @param topTab A data frame with feature significance
#' information (must include a 'Significant' column)
#' @param samples A character vector indicating which sample
#' conditions to include (matches pData(eset)$Condition)
#' @param title A character string for the plot title
#' @return A ggplot object of MDS results with points colored by significance
#' @export

Identify columns (samples) matching the requested conditions
samples_contrast <- which(pData(eset)$Condition %in% samples)

Subset expression matrix to these samples
exprs_sub <- exprs(eset)[, samples_contrast]

Remove rows (features) with any missing values
exprs_sub <- exprs_sub[rowSums(is.na(exprs_mat)) == 0,]

Ensure only proteins in both topTable and subset matrix
common_proteins <- intersect(rownames(exprs_sub), rownames(topTab))
exprs_sub <- exprs_sub[common_proteins,]
topTab_sub <- topTab[common_proteins,]

Perform MDS analysis but do not plot immediately
mds <- plotMDS(t(exprs_sub), dim.plot = c(2,3), plot = FALSE)

15

mds_df <- data.frame(
Dim1 = mds$x,
Dim2 = mds$y,
Significant = factor(topTab_sub$Significant,

levels = c("Significant", "Not Significant"))
)

Define a color map
color_map <- c(

"Significant" = rgb(178, 34, 34, alpha = 180, maxColorValue = 255),
"Not Significant" = rgb(169, 169, 169, alpha = 80, maxColorValue = 255)

)

p <- ggplot(mds_df, aes(x = Dim1, y = Dim2, color = Significant)) +
geom_point(size = 1.5, alpha = 0.8) +
scale_color_manual(values = color_map) +
labs(
title = title,
x = paste0("Dim 1 (", round(mds$var.explained[1] * 100, 1), "%)"),
y = paste0("Dim 2 (", round(mds$var.explained[2] * 100, 1), "%)")

) +
theme_minimal() +
theme(
plot.title = element_text(hjust = 0.5),
legend.title = element_blank()

)

return(p)
}

3. Results

This section presents the results of a structured data visualization workflow applied to a
proteomics dataset. Visualizations include volcano plots, multidimensional scaling (MDS)
plots, heatmaps, Venn diagrams, and gene-concept network plots. These figures, each at a
different stage in the analysis pipeline, demonstrate the progression from statistical modeling,
to differential expression analysis, to pathway enrichment analysis.

16

3.1 Sample-Level MDS Plots

Samples are plotted in two dimensions, and are colored by their condition group. Sample-level
MDS plots were created for filtered and imputed data to compare how well samples within the
same condition group cluster.

For unfiltered:
sample_names_filtered <- colnames(exprs(eset_filtered))
group_filtered <- factor(sapply(strsplit(sample_names_filtered, ": "),

function(x) x[2]))

For imputed:
sample_names_imputed <- colnames(exprs(eset_imputed))
group_imputed <- factor(sapply(strsplit(sample_names_imputed, ": "),

function(x) x[2]))

group_colors <- c("KO" = "blue", "KO-IV" = "red", "KO-NEB" = "forestgreen", "WT" = "orange")

par(mfrow = c(2, 1))

plot_mds(exprs(eset_filtered), 1, 2, group_filtered, group_colors)
plot_mds(exprs(eset_imputed), 1, 2, group_imputed, group_colors, clean = TRUE)

17

−0.5 0.0 0.5 1.0

−
0.

5
0.

5

Filtered

Dim 1 (31.08%)

D
im

 2
 (

24
.4

8%
)

KO
KO−IV
KO−NEB
WT

−0.5 0.0 0.5 1.0 1.5 2.0

−
0.

5
0.

5

Imputed

Dim 1 (42.78%)

D
im

 2
 (

22
.8

4%
)

KO
KO−IV
KO−NEB
WT

Figure 1A. MDS plots by sample, across dimension 1 and 2, for imputed and filtered data.
Each sample is colored by condition group.

par(mfrow = c(2, 1))
plot_mds(eset_filtered, 1, 3, group_filtered, group_colors)
plot_mds(eset_imputed, 1, 3, group_imputed, group_colors, clean = TRUE)

18

−0.5 0.0 0.5 1.0

−
0.

8
−

0.
2

0.
4

Filtered

Dim 1 (31.08%)

D
im

 3
 (

16
.0

2%
)

KO
KO−IV
KO−NEB
WT

−0.5 0.0 0.5 1.0 1.5 2.0

−
1.

0
0.

0
1.

0

Imputed

Dim 1 (42.78%)

D
im

 3
 (

16
.4

%
)

KO
KO−IV
KO−NEB
WT

Figure 1B. MDS plots by sample, across dimension 1 and 3, for imputed and filtered data.
Each sample is colored by condition group.

par(mfrow = c(2, 1))
plot_mds(eset_filtered, 2, 3, group_filtered, group_colors)
plot_mds(eset_imputed, 2, 3, group_imputed, group_colors, clean = TRUE)

19

−0.5 0.0 0.5 1.0

−
0.

8
−

0.
2

0.
4

Filtered

Dim 2 (24.48%)

D
im

 3
 (

16
.0

2%
)

KO
KO−IV
KO−NEB
WT

−0.5 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

Imputed

Dim 2 (22.84%)

D
im

 3
 (

16
.4

%
)

KO
KO−IV
KO−NEB
WT

Figure 1C. MDS plots by sample, across dimension 2 and 3. Each sample is colored by condition
group.

3.2 Variability Across MDS Plot Dimensions

These graphs show the variability accounted for by each dimension from MDS analysis, for
filtered data and imputed data. The interpretability of each of the dimensions is not clear.

var_expl <- plot_mds(eset_filtered, 1, 2, plot = FALSE)

var_df <- data.frame(
PC = factor(1:6),
Variability = var_expl[1:6] / 100 # Convert back to proportion for y-axis

20

)

p1 <- ggplot(var_df, aes(x = PC, y = Variability)) +
geom_bar(stat = "identity", fill = "#1f77b4") +
labs(title = "Filtered Data",

x = "Dimension",
y = "Variability") +

theme_minimal(base_size = 14)

var_expl1 <- plot_mds(eset_imputed, 1, 2, plot = FALSE)

var_df <- data.frame(
PC = factor(1:6),
Variability = var_expl1[1:6] / 100 # Convert back to proportion for y-axis

)

p2 <- ggplot(var_df, aes(x = PC, y = Variability)) +
geom_bar(stat = "identity", fill = "#1f77b4") +
labs(title = "Imputed Data",

x = "Dimension",
y = "Variability") +

theme_minimal(base_size = 14)

p1 + p2

21

0.0

0.1

0.2

0.3

1 2 3 4 5 6

Dimension

V
ar

ia
bi

lit
y

Filtered Data

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6

Dimension
V

ar
ia

bi
lit

y

Imputed Data

Figure 2. Bar plot of variability explained by each dimension from MDS analysis, for filtered
and imputed data.

3.3 Volcano Plots

Volcano plots visualize the distribution of protein-level differential expression. The x-axis is
the log2 𝐹𝐶, and the y-axis is the − log10 adjusted P-value. The horizontal and vertical dotted
line display the significance thresholds (FDR < 0.05, | log2 𝐹𝐶| ≥ 1 respectively). Proteins
outside and above the dotted lines are classified as differentially expressed, and colored in
red.

volcano1 <- ggplot(topTab_WTvsKO, aes(x = logFC, y = -log10(adj.P.Val),
color = Significant)) +

geom_point(alpha = 0.7) +
scale_color_manual(values = c("gray", "red")) +
geom_vline(xintercept = c(-SigLFC, SigLFC), linetype = "dashed") +
geom_hline(yintercept = -log10(SigP), linetype = "dashed") +
labs(title = "WT vs KO",

x = "log2 Fold Change",
y = "-log10 Adjusted P-Value",
color = "significance") +

theme_minimal()

22

volcano2 <- ggplot(topTab_KO.IVvsKO, aes(x = logFC, y = -log10(adj.P.Val),
color = Significant)) +

geom_point(alpha = 0.7) +
scale_color_manual(values = c("gray", "red")) +
geom_vline(xintercept = c(-SigLFC, SigLFC), linetype = "dashed") +
geom_hline(yintercept = -log10(SigP), linetype = "dashed") +
labs(title = "KO-IV vs KO",

x = "log2 Fold Change",
y = "-log10 Adjusted P-Value",
color = "Significance"
) +

theme_minimal()

volcano3 <- ggplot(topTab_KO.NEBvsKO, aes(x = logFC, y = -log10(adj.P.Val),
color = Significant)) +

geom_point(alpha = 0.7) +
scale_color_manual(values = c("gray", "red")) +
geom_vline(xintercept = c(-SigLFC, SigLFC), linetype = "dashed") +
geom_hline(yintercept = -log10(SigP), linetype = "dashed") +
labs(title = "KO-NEB vs KO",

x = "log2 Fold Change",
y = "-log10 Adjusted P-Value",
color = "Significance") +

theme_minimal()

volcano1_clean <- volcano1 + theme(axis.title = element_blank())
volcano2_clean <- volcano2 + theme(axis.title = element_blank())
volcano3_clean <- volcano3 + theme(axis.title = element_blank())

combined_volcano <- ggarrange(volcano1_clean, volcano2_clean, volcano3_clean,
ncol = 3,
common.legend = TRUE,
legend = "right")

final_volcano_plot <- annotate_figure(combined_volcano,
left = text_grob("-log10 Adjusted P-Value", rot = 90, vjust = 1, size = 12),
bottom = text_grob("log2 Fold Change", size = 12)

)

Display the result
print(final_volcano_plot)

23

0

1

2

3

4

5

−5.0 −2.5 0.0 2.5

WT vs KO

0

1

2

3

4

5

−5.0 −2.5 0.0 2.5 5.0

KO−IV vs KO

0

2

4

−5.0 −2.5 0.0 2.5 5.0

KO−NEB vs KO

significance

Not Significant

Significant

NA

log2 Fold Change

−
lo

g1
0

A
dj

us
te

d
P

−
V

al
ue

Figure 3. Volcano Plots across comparisons. Red points represent Differentially Expressed
proteins (FDR < 0.05, | log2 𝐹𝐶| ≥ 1), and grey points represent insignificant proteins.

3.4 Venn Diagram of Differentially Expressed Protein Overlap

The vennDiagram function from the limma package was used to create a Venn diagram display-
ing the number of differentially expressed proteins that overlap between condition groups.

vennDiagram(res.selected[,1:3], cex=0.7)

WTvsKO KO.IVvsKO

KO.NEBvsKO 0

93

44

24

100

26

19

20

Figure 4. Venn Diagram of the number of significant proteins shared in each contrast group.

24

3.5 Heatmap

The Heatmap displays the similarities between proteins and condition groups, and hierarchi-
cally clusters them. Z-scores are colored from blue to white to red, where blue represents
relatively low expression, white represents average expression, and red represents relatively
high expression across differentially expressed proteins.

heatmap_plot

F
3:

 K
O

F
2:

 K
O

F
1:

 K
O

F
6:

 K
O

−
IV

F
4:

 K
O

−
IV

F
5:

 K
O

−
IV

F
8:

 K
O

−
N

E
B

F
9:

 K
O

−
N

E
B

F
7:

 K
O

−
N

E
B

F
12

: W
T

F
11

: W
T

F
10

: W
T

Condition

z−score

−2
−1
0
1
2

Condition

KO
KO−IV
KO−NEB
WT

Figure 5. Heatmap of differentially expressed proteins (FDR < 0.05, | log2 𝐹𝐶| ≥ 1) across con-
ditions. Hierarchical clustering was performed across proteins (rows) and samples (columns)
using dendrograms to group similar expression levels. Colors represent Z-scores indicating
relative expression levels normalized to the mean.

3.6 Gene-Concept Network Plots

Gene-concept network plots were created used the cnetplot function from the clusterProfiler
package (Yu et al. 2012). Significant proteins are labeled and represented by the small
grey points, and pathways are represented by the yellow dots. The size of the yellow dot
corresponds to the number of significant proteins found in that pathway, and edges between
proteins and pathways indicate that that protein was found in the pathway. Edges are colored
by pathway as well.

25

enrichObjects <- enrichment_output$enrichObjects

for (name in names(enrichObjects)) {
cat("Plotting for:", name, "\n")

enrichObj <-enrichObjects[[name]]

if (nrow(as.data.frame(enrichObj)) > 0) {
p <- cnetplot(enrichObj, categorySize = "geneNum", colorEdge = TRUE,

node_label = "gene")
p <- p + ggtitle(name)

print(p)

}
}

Plotting for: KO.NEBvsKO
Plotting for: KO.IVvsKO
Plotting for: WTvsKO

1231312313123131231312313123131231312313123131231312313123131231312313123131231312313
1231412314123141231412314123141231412314123141231412314123141231412314123141231412314

1231512315123151231512315123151231512315123151231512315123151231512315123151231512315

1238912389123891238912389123891238912389123891238912389123891238912389123891238912389

1343013430134301343013430134301343013430134301343013430134301343013430134301343013430

1867918679186791867918679186791867918679186791867918679186791867918679186791867918679

1438714387143871438714387143871438714387143871438714387143871438714387143871438714387

1908419084190841908419084190841908419084190841908419084190841908419084190841908419084

1546915469154691546915469154691546915469154691546915469154691546915469154691546915469

1468814688146881468814688146881468814688146881468814688146881468814688146881468814688

1364913649136491364913649136491364913649136491364913649136491364913649136491364913649

category

Extra−nuclear estrogen signaling

Glycogen breakdown (glycogenolysis)

Metabolism of nitric oxide: NOS3 activation and regulation

PKA activation

PKA−mediated phosphorylation of CREB

size

3

4

5

6

7

WTvsKO

26

Figure 6. Reactome pathway network showing group membership of significant proteins in
enriched pathways, for WT vs KO comparison. Edges are colored by pathway, and node sizes
correspond to group size.

3.7 Enrichment Analysis Plots

A figure similar to Schessner et al. (2022, Fig. 4G) (Schessner, Voytik, and Bludau 2022)
was recreated in R for this analysis. This figure displays the enriched pathways for each
condition group, ordered by − log10 adjusted p-value. The odds ratio was computed by taking
the number of significant proteins found in a pathway out of the total number of significant
proteins, and the number of universe proteins found in a pathway out of the total number
of universe proteins, and compute their ratio. The size of the points detail the number of
significant proteins found in each pathway. In our case, only the WT:KO condition group had
enriched pathways, so only one graph was displayed.

enrichmentResults <- enrichment_output$enrichmentResults

For each contrast group
for (i in seq_along(enrichmentResults)){

if (nrow(enrichmentResults[[i]]) > 0){

enrichmentDf <- enrichmentResults[[i]]

create dataframe order by adjusted p-value
plotDf <- enrichmentDf[order(enrichmentDf$p.adjust),]

Calculate odds ratio

geneHits <- as.numeric(sub("/.*", "", enrichmentDf$GeneRatio))
x in x/y
geneTotal <- as.numeric(sub(".*/", "", enrichmentDf$GeneRatio))
y in x/y

bgHits <- as.numeric(sub("/.*", "", enrichmentDf$BgRatio))
x in x/y
bgTotal <- as.numeric(sub(".*/", "", enrichmentDf$BgRatio))
y in x/y

geneHits <- geneHits[order(enrichmentDf$p.adjust)]
geneTotal <- geneTotal[order(enrichmentDf$p.adjust)]
bgHits <- bgHits[order(enrichmentDf$p.adjust)]
bgTotal <- bgTotal[order(enrichmentDf$p.adjust)]

27

plotDf$oddsRatio <- (geneHits / geneTotal)/ (bgHits / bgTotal)

print(ggplot(plotDf, aes(x = -log10(p.adjust),
y = reorder(Description, -p.adjust),
size = Count)) +

geom_point(aes(color = oddsRatio)) +
scale_color_viridis_c() +
labs(title = names(enrichmentResults)[i],

x = expression(-log[10]("adjusted p-value")),
y = NULL,
size = "n significant",
color = "odds ratio") +

theme_minimal(base_size = 12) +
theme(
axis.text.y = element_text(size = 10),
axis.text.x = element_text(angle = 45, hjust = 1),
plot.title = element_text(hjust = 0.5, face = "bold"),
legend.position = "right"

)
)

}
}

Glycogen metabolism

Post NMDA receptor activation events

eNOS activation

Extra−nuclear estrogen signaling

Glycogen breakdown (glycogenolysis)

PKA activation

PKA−mediated phosphorylation of CREB

RHO GTPases activate PAKs

Metabolism of nitric oxide: NOS3 activation and regulation

1.
4

1.
5

1.
6

1.
7

− log10(adjusted p−value)

n significant

4

5

6

7

odds ratio

6
7
8
9
10
11

WTvsKO

Figure 7. Enriched pathways for the WT:KO comparison, ordered by – log10 adjusted p-value.
Point size indicates the number of significant proteins per pathway, and odds ratios were
computed relative to the background protein set.

28

3.8 Protein Level MDS Plots

Proteins are plotted in two dimensions, with point colors reflecting statistical significance
status. Significant proteins are highlighted in red, while non-significant proteins are shown in
gray.

p1 <- plotMDSContrast(eset_unfiltered, topTab_WTvsKO, c("WT", "KO"),
"WT vs KO")

p2 <- plotMDSContrast(eset_unfiltered, topTab_KO.IVvsKO, c("KO-IV", "KO"),
"KO-IV vs KO")

p3 <- plotMDSContrast(eset_unfiltered, topTab_KO.NEBvsKO, c("KO-NEB", "KO"),
"KO-NEB vs KO")

combined_MDS <- ggarrange(p1, p2, p3,
nrow = 3,
common.legend = TRUE,
legend = "right")

Display the result
print(combined_MDS)

29

−1

0

1

−3 −2 −1 0 1 2
Dim 1 (96.8%)

D
im

 2
 (

1.
8%

)
WT vs KO

−1

0

1

−2 −1 0 1 2
Dim 1 (97.7%)

D
im

 2
 (

1.
2%

)

KO−IV vs KO

−1

0

1

−2 −1 0 1 2 3
Dim 1 (97.8%)

D
im

 2
 (

1.
4%

)

KO−NEB vs KO

Significant

Not Significant

Figure 8. Protein-Level MDS plots for each contrast group, with points representing individual

30

proteins colored by significance. For each contrast, MDS was performed on the subset of
proteins without missing values, using leading log�-fold-change distances between expression
profiles across samples.

4. Conclusion

Through this project, I learned a proteomics workflow in R. This included data pre-processing
and imputation, differential expression analysis and enriched pathway analysis. I built many
visualizations, including volcano plots, MDS plots, venn diagrams, gene-concept network plots
and enrichment analysis visualizations.

Some things I would do next time is outline the figure of my project before starting, and making
changes as necessary. I would also keep track of my citations and add documentation as I go
rather than doing it all at the end, because it is harder to remember my process after having
already done it. I would also like to explore further imputation methods for proteomics data
with missing values. A project I could research further would be to develop an R function that
implements the empirical bayesian random censoring threshold model described in Koopmans
et al. (2014) (Koopmans et al. 2014). I could also develop R functions for imputation methods
described in Wang et al. (2017) (Wang et al. 2017), and access how they perform against each
other for differential expression analysis through limma.

5. References

Bioconductor. n.d. “plotMDS Function (Limma Package, Version 3.28.14).” https://www.
rdocumentation.org/packages/limma/versions/3.28.14/topics/plotMDS.

Gentleman, Robert, Vincent Carey, Douglas Bates, Ben Bolstad, Mark Dettling, Sandrine
Dudoit, Byron Ellis, et al. 2004. “Bioconductor: Open Software Development for Com-
putational Biology and Bioinformatics.” Genome Biology 5 (10): R80. https://doi.org/10.
1186/gb-2004-5-10-r80.

Gu, Zuguang, Roland Eils, and Matthias Schlesner. 2016. “Complex Heatmaps Reveal Pat-
terns and Correlations in Multidimensional Genomic Data.” Bioinformatics 32 (18): 2847–
49. https://doi.org/10.1093/bioinformatics/btw313.

Huber, Wolfgang, Vincent J. Carey, Robert Gentleman, Simon Anders, Marc Carlson, Benilton
S. Carvalho, Hector Corrada Bravo, et al. 2015. “Orchestrating High-Throughput Genomic
Analysis with Bioconductor.” Nature Methods 12: 115–21. https://doi.org/10.1038/nmeth.
3252.

Kammers, Kamil, Robert N. Cole, Calvin Tiengwe, and Ingo Ruczinski. 2015. “Detecting
Significant Changes in Protein Abundance.” EuPA Open Proteomics 7: 11–19. https:
//doi.org/10.1016/j.euprot.2015.02.002.

31

https://www.rdocumentation.org/packages/limma/versions/3.28.14/topics/plotMDS
https://www.rdocumentation.org/packages/limma/versions/3.28.14/topics/plotMDS
https://doi.org/10.1186/gb-2004-5-10-r80
https://doi.org/10.1186/gb-2004-5-10-r80
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1038/nmeth.3252
https://doi.org/10.1038/nmeth.3252
https://doi.org/10.1016/j.euprot.2015.02.002
https://doi.org/10.1016/j.euprot.2015.02.002

Koopmans, Freek, Lennart N Cornelisse, Tom Heskes, and Ton M Dijkstra. 2014. “Empirical
Bayesian Random Censoring Threshold Model Improves Detection of Differentially Abun-
dant Proteins.” Journal of Proteome Research 13 (9): 3871–80. https://doi.org/10.1021/
pr500171u.

Lazar, Cristian, Laurent Gatto, Michaël Ferro, Christophe Bruley, and Thomas Burger. 2016.
“Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Pro-
teomics Data Sets to Compare Imputation Strategies.” Journal of Proteome Research 15
(4): 1116–25. https://doi.org/10.1021/acs.jproteome.5b00981.

Ligtenberg, Willem. 2019. Reactome.db: A Set of Annotation Maps for Reactome. https:
//bioconductor.org/packages/reactome.db/.

Pagès, Hervé, Marc Carlson, Seth Falcon, and Nianhua Li. 2023. AnnotationDbi: Manipu-
lation of SQLite-Based Annotations in Bioconductor. https://bioconductor.org/packages/
AnnotationDbi/.

Phipson, Belinda, Si Lee, Ian J Majewski, Warren S Alexander, and Gordon K Smyth. 2016.
“Robust Hyperparameter Estimation Protects Against Hypervariable Genes and Improves
Power to Detect Differential Expression.” Annals of Applied Statistics 10 (2): 946–63.
https://doi.org/10.1214/16-AOAS920.

Ritchie, Matthew E., Belinda Phipson, Di Wu, Yifang Hu, Charity W. Law, Wei Shi, and
Gordon K. Smyth. 2015. “Limma Powers Differential Expression Analyses for RNA-
Sequencing and Microarray Studies.” Nucleic Acids Research 43 (7): e47. https://doi.org/
10.1093/nar/gkv007.

Sanz, Ricardo Gonzalo, and Alex Sánchez-Pla. 2019. “Statistical Analysis of Microarray Data.”
Edited by Verónica Bolón-Canedo and Amparo Alonso-Betanzos, Methods in molecular
biology, 1986: 87–121. https://doi.org/10.1007/978-1-4939-9442-7_5.

Schessner, Julia Patricia, Eugenia Voytik, and Isabell Bludau. 2022. “A Practical Guide to
Interpreting and Generating Bottom-up Proteomics Data Visualizations.” Proteomics 22
(8): e2100103. https://doi.org/10.1002/pmic.202100103.

Wang, Jianqiang, Lin Li, Ting Chen, et al. 2017. “In-Depth Method Assessments of Differ-
entially Expressed Protein Detection for Shotgun Proteomics Data with Missing Values.”
Scientific Reports 7: 3367. https://doi.org/10.1038/s41598-017-03650-8.

Yu, Guangchuang, and Qing-Yu He. 2016. “ReactomePA: An r/Bioconductor Package for
Reactome Pathway Analysis and Visualization.” Molecular BioSystems 12 (2): 477–79.
https://doi.org/10.1039/C5MB00663E.

Yu, Guangchuang, Li-Gen Wang, Yanyan Han, and Qing-Yu He. 2012. “clusterProfiler: An r
Package for Comparing Biological Themes Among Gene Clusters.” OMICS: A Journal of
Integrative Biology 16 (5): 284–87. https://doi.org/10.1089/omi.2011.0118.

32

https://doi.org/10.1021/pr500171u
https://doi.org/10.1021/pr500171u
https://doi.org/10.1021/acs.jproteome.5b00981
https://bioconductor.org/packages/reactome.db/
https://bioconductor.org/packages/reactome.db/
https://bioconductor.org/packages/AnnotationDbi/
https://bioconductor.org/packages/AnnotationDbi/
https://doi.org/10.1214/16-AOAS920
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1007/978-1-4939-9442-7_5
https://doi.org/10.1002/pmic.202100103
https://doi.org/10.1038/s41598-017-03650-8
https://doi.org/10.1039/C5MB00663E
https://doi.org/10.1089/omi.2011.0118

	Introduction:
	2. Methods:
	2.1 Data Acquisition and Pre-processing
	2.2 Visualization Workflows
	2.2.1 Sample-Level MDS Plots and Dimension Variance
	2.2.2 Volcano Plots for Differential Expression Analysis
	2.2.3 Overlap of Differentially Expressed Proteins Across Contrasts
	2.2.4 Heatmap of Differentially Expressed Proteins
	2.2.5 Enrichment Analysis
	2.2.6 Protein-Level MDS Plots Across Contrast Groups

	3. Results
	3.1 Sample-Level MDS Plots
	3.2 Variability Across MDS Plot Dimensions
	3.3 Volcano Plots
	3.4 Venn Diagram of Differentially Expressed Protein Overlap
	3.5 Heatmap
	3.6 Gene-Concept Network Plots
	3.7 Enrichment Analysis Plots
	3.8 Protein Level MDS Plots

	4. Conclusion
	5. References

